Western Environmental
Testing Laboratory
Lessons from the Lab: Cyanide Testing Requirements

In our blog posts Lessons From the Lab we answer frequently asked questions from clients.  Find all installments of Lessons From the Lab here

Cyanide sampling requirements have become stricter over the years. The Nevada Division of Environmental Protection (NDEP) issued guidance in October of 2015 that cyanide analysis must be collected correctly in the field so as not to have samples rejected by the analytical laboratory, or by the state due to incorrect sampling procedures.

NDEP stated, “If you are analyzing Cyanide samples for compliance with a Nevada program, (SDWA, CWA, RCRA, Mining) samples must be collected as described below (ASTM D-7365-09).  Data obtained from samples not collected as described in ASTM D-7365-09 will be rejected.”

“ASTM D-7365-09 8.2.1 states that sample containers shall be made of materials that will not contaminate the sample, cleaned thoroughly to remove all extraneous surface contamination prior to use.  Chemically resistant glass containers as well as rigid plastic containers made of high density polyethylene (HDPE) are suitable.  Samples should be collected and stored in amber gas tight vials or narrow mouth bottles to minimize exposure to ultraviolet radiation and to minimize headspace in the sample containers (for example, amber open top VOA vials, amber Boston round bottles, or amber narrow-mouth HDPE bottles).”

“All certified Laboratories must reject samples not collected in suitable containers.”

What does this mean? All samples, regardless of matrix (drinking water, wastewater, ground water, surface water, aqueous, soil, sludge, etc.), must be collected in an amber narrow mouth container to minimize UV radiation exposure and to minimize headspace in sample containers.  Samples not collected in the correct containers must be rejected by the laboratory and the sample should be collected in the correct containers, as described above. Furthermore, as dictated by the method cited by NDEP, chemical preservation is also required for aqueous samples.  Aqueous samples must be preserved with sodium hydroxide (NaOH) to pH >10 at the time of collection, and then chilled on ice.

At WETLAB, we provide the appropriate bottles and preservative (NaOH) needed for your cyanide analysis, and are happy to answer any questions you may have regarding cyanide sampling containers.

Please call us at any at 775-355-0202 to request sample containers.

One of the ways WETLAB strives to better serve our clients is to understand what they do at every level.  We believe that by knowing what our clients do, we can help them reach their goals.  Hollie Timmons, Client Services Manager, and Michelle Sherven, WETLAB President visited long-time client Lyon County Utilities to better understand what they do, and what role WETLAB can play in their success.  To learn more about Lyon County Utilities, watch their client testimonial here.  Below, Hollie tells us about the visit.

On Cinco De Mayo, Michelle and I went to Lyon County Utilities to tour the wastewater treatment plant and one of their drinking water well houses. It was very interesting to see the whole process from start to finish! We started at the entry point where all the wastewater enters the plant and got to see the headworks building, where augers keep the pipes from getting clogged with hair and paper (among other things). This was the most disgusting part seeing all the hair wound up in a mass, which we were told gets all “roped-up” every so often and jams the augers, so someone has to get in there and remove all the sewage-soaked hair, which made me really appreciate my desk job! This building also had the strongest odor, which was a humid combination of raw sewage and a burning, overwhelming ammonia scent that was enough to make your eyes water! After that, we got to see the grit separator and their huge jet-engine aerators that pump air to all the tanks, where a combination of certain bacteria/microbes are added to the mixture. These bacteria do their job to break down the organic matter, and the solids settle to the bottom of the tanks to further decompose. Once this process is complete, the water is decanted/skimmed from the top and passes through a winding series of channels where the water is chlorinated for disinfection. This treated water then goes into a covered pond (to control algae growth) where it slowly seeps into the ground and is eventually returned to the ground water, completing the full circle of sewage life. The sludge (essentially the dead bacteria/microbes, killed off by the chlorination) is transferred to a drying bed, which some treatment plants then sell to farms for use as fertilizer. This treatment plant requires so much power to run, that they have the largest 12-cylinder generator I have ever seen, to ensure the plant operations do not come to a halt in the event of a power outage. After the tour was finished, we had lunch and then drove to one of their drinking water wells that takes in surface water from a nearby river/stream. The water is pumped through the well house, chlorinated, and piped to the nearby homes. While we were in the pump house, we experienced a sudden torrential hail-storm, which stranded us inside. We watched the marble-sized hail shred the leaves off nearby trees and pelt the building with a thunderous roar, falling like frozen bullets from the sky. It made for the perfect ending to a very fun day!!
Michelle and Hollie with our great clients from Lyon County Utilities

Michelle and Hollie with our great clients from Lyon County Utilities

 

Hollie is always striving to serve our clients better

Hollie is always striving to serve our clients better