Western Environmental
Testing Laboratory
Good Data Takes Good Communication

At WETLAB, we believe that good communication is a critical part of ensuring our clients receive good data.  Our QA manager and sales team presented on this topic in March at the Nevada Rural Water Association Conference in Reno, NV. Below is a small synopsis of this presentation. 

Good communication appears to be a simple goal, but can be difficult to achieve.  There are many players involved at every stage, and one small miscommunication can result in the end product not being what is needed.  The —ultimate goal is to produce legally defensible results that meet Data Quality objectives.

The many moving parts of good communication.

The many moving parts of good communication.

It is imperative that clients and the lab communicate clearly- WETLAB strives to ensure that all of our clients understand what data they need to satisfy regulatory requirements. The regulatory landscape concerning water is ever-changing, and can be confusing.  At WETLAB, we stay up to date with the latest changes so that we can help our clients get the results they need.  Outside of the lab, we talk to our clients and their regulators to determine needs.  Inside of the lab, we discuss projects clearly throughout all departments.

Clear communication has many moving pieces inside the lab.

Clear communication has many moving pieces inside the lab.

The critical point of communication occurs between the client and the lab.  Providing WETLAB with the appropriate documents helps to clearly show objectives. These documents include: a detailed Client Information Sheet, a Sampling Analysis Plan, the Scope of Work, and the Chain of Custody.  Having an accurate and clear Chain of Custody is imperative to retain legal defensibility of sample results.  Our staff reviews all Chain of Custody forms to make sure they are clear and fully completed.

If all participants communicate as clearly as possible, the goal of regulatory compliance can be achieved.  Contact WETLAB to see how we can help you achieve your goals.

In our blog posts Lessons From the Lab we answer frequently asked questions from clients.  Find all installments of Lessons From the Lab here

What is Trace Metals Analysis?

Trace Metals analysis may be performed on a variety of aqueous matrices. Depending on the objective of your sampling, WETLAB can perform total recoverable or dissolved metals analysis. For total recoverable or total metals analysis, the sample must be preserved with the addition of nitric acid (HNO3) to lower the pH of the sample to <2. Dissolved metals require an additional step prior to the addition of HNO3. Samples for dissolved metals must be filtered using a 0.45 µm filter, after the sample has passed through the filter, the sample must be preserved with HNO3. In SW-846, the EPA recommends that samples are field filtered. If field filtration is not possible, clients may submit an unpreserved sample to WETLAB and we can filter the sample using 0.45 µm filters and preserve with HNO3. If field preservation is not possible, the EPA recommends in EPA 200.2, “Preservation may be done at the time of sample collection, however, to avoid the hazards of strong acids in the field, transport restrictions, and possible contamination it is recommended that the samples be returned to the laboratory within two weeks of collection and acid preserved upon receipt in the laboratory. Following acidification, the sample should be mixed and held for 16 hours.” Aqueous samples that have been properly preserved for trace metals analysis by EPA 200.7 and/or EPA 200.8 may be held and analyzed up to six months after collection date.

 

 

In our blog posts Lessons From the Lab we answer frequently asked questions from clients.  Find all installments of Lessons From the Lab here

What is a Reporting Limit?

A Reporting Limit (RL) is defined as the smallest concentration of a chemical that can be reported by a laboratory. If a laboratory is unable to detect a chemical in a sample, it does not necessarily mean that the chemical is absent from the sample altogether. It could be that the chemical concentration in the sample is below the sensitivity of the testing instrument. Concentrations below the RL are reported as not detectable at the RL or “less than” the RL. The RL value is often defined be each specific laboratory, so it is not uncommon to come across different RL’s when testing the same compound. RL’s act as safety protocols that allow laboratories to efficiently communicate the different variables correlated with testing and analyzing samples from a wide variety of sources and factors. It is important to identify the limit of concern that the client has when testing their sample to ensure that the RL is less than the regulatory limit. That enables a laboratory to identify whether a concentration of the chemical in question is above the regulatory limit of concern.

WETLAB is a certified lab for drinking water testing in Nevada, with reciprocity for testing in California, Wyoming, and Idaho.  This means that when you send drinking water samples to WETLAB, we guarantee thorough, high-quality data that complies with regulatory standards.  We ensure that your sample is analyzed with up-to-date methods, performed with the precision and attention to detail that you require.  We analyze drinking water for regulated public water systems of all sizes and for private domestic wells.

Private domestic well owners face a unique set of circumstances not often realized by many people who utilize a community water system.  Well owners are responsible for ensuring their own water quality, which means regular water testing.  Your water can contain microscopic particulates and micro-organisms that you would be unable to detect with your naked eye.  The Environmental Protection Agency recommends testing your well regularly for several contaminants, including total coliform, pH, corrosion, nitrates, and metals.  If you experience any changes in water quality, such as rapid corrosion of pipes, undesirable tastes or smells, or increased scaly build-up, you may be interested in testing your water quality.

If you are interested in testing your private domestic well, reference this helpful guide from the UNR Cooperative Extension.  This guide will help you determine what drinking water parameters you may be interested in testing for, and what the critical limits for some contaminants are.  After you test your water, you can use this tool to help interpret your results.  Our friendly staff at WETLAB will be happy to assist you with any other questions you might have.

WETLAB provides a uniquely client-oriented lab experience that will ensure you obtain the quality lab results you seek.  Contact WETLAB at (775) 355-0202 to determine how we can help you.

Our ongoing series Life of a Sample explores what happens behind the scenes at WETLAB.  If you missed parts one through four, check them out here!

At this point in our sample’s life cycle, the sample has been received, prepped, distilled/ digested, and analyzed.  The next step is entering all the collected data so that it can be transmitted to clients.  During this step, all the raw data is double-checked for inaccuracies and to ensure that all quality control samples have been included.  All data that can’t be migrated digitally is hand-entered by lab technicians, which is then checked for input errors such as incorrect dates or mis-typed numbers.  Catching these small errors is critical for ensuring data is reported correctly and on time for our clients.  This step is typically completed by the end of the day the sample finishes analysis.  After data entry, our sample will reach its terminal stage- reporting.

One of our talented lab technicians working to ensure quality data.

One of our talented lab technicians working to ensure quality data.

One of the ways WETLAB strives to better serve our clients is to understand what they do at every level.  We believe that by knowing what our clients do, we can help them reach their goals.  Hollie Timmons, Client Services Manager, and Michelle Sherven, WETLAB President visited long-time client Lyon County Utilities to better understand what they do, and what role WETLAB can play in their success.  To learn more about Lyon County Utilities, watch their client testimonial here.  Below, Hollie tells us about the visit.

On Cinco De Mayo, Michelle and I went to Lyon County Utilities to tour the wastewater treatment plant and one of their drinking water well houses. It was very interesting to see the whole process from start to finish! We started at the entry point where all the wastewater enters the plant and got to see the headworks building, where augers keep the pipes from getting clogged with hair and paper (among other things). This was the most disgusting part seeing all the hair wound up in a mass, which we were told gets all “roped-up” every so often and jams the augers, so someone has to get in there and remove all the sewage-soaked hair, which made me really appreciate my desk job! This building also had the strongest odor, which was a humid combination of raw sewage and a burning, overwhelming ammonia scent that was enough to make your eyes water! After that, we got to see the grit separator and their huge jet-engine aerators that pump air to all the tanks, where a combination of certain bacteria/microbes are added to the mixture. These bacteria do their job to break down the organic matter, and the solids settle to the bottom of the tanks to further decompose. Once this process is complete, the water is decanted/skimmed from the top and passes through a winding series of channels where the water is chlorinated for disinfection. This treated water then goes into a covered pond (to control algae growth) where it slowly seeps into the ground and is eventually returned to the ground water, completing the full circle of sewage life. The sludge (essentially the dead bacteria/microbes, killed off by the chlorination) is transferred to a drying bed, which some treatment plants then sell to farms for use as fertilizer. This treatment plant requires so much power to run, that they have the largest 12-cylinder generator I have ever seen, to ensure the plant operations do not come to a halt in the event of a power outage. After the tour was finished, we had lunch and then drove to one of their drinking water wells that takes in surface water from a nearby river/stream. The water is pumped through the well house, chlorinated, and piped to the nearby homes. While we were in the pump house, we experienced a sudden torrential hail-storm, which stranded us inside. We watched the marble-sized hail shred the leaves off nearby trees and pelt the building with a thunderous roar, falling like frozen bullets from the sky. It made for the perfect ending to a very fun day!!
Michelle and Hollie with our great clients from Lyon County Utilities

Michelle and Hollie with our great clients from Lyon County Utilities

 

Hollie is always striving to serve our clients better

Hollie is always striving to serve our clients better

Our ongoing series Life of a Sample explores what happens behind the scenes at WETLAB.  If you missed part one, two, or three, check them out here!

The next step for our samples life cycle is analysis, which takes around four days, depending on the method.  Analysis starts with batch prepping the samples and preparing the instrument.  All daily required instrument maintenance is also preformed during this step.  All reagents and standards are logged here, and will later be used to monitor for QA/QC and determine accuracy.  When the batches and machines are prepped, the samples are run through analysis.  During this time, all quality control samples are monitored to ensure that the machines are functioning properly and there are no problems with analysis.  If any issues or unexpected results appear, analysts will trouble shoot all instruments and samples.  Samples that do not meet acceptance criteria are then re-run.  Potential problems can arise when samples have complicated matrices, which can cause equipment malfunctions. Once our samples are done in the analysis stage, it’s on to data entry.

A few of WETLAB's state of the art analysis instruments.

A few of WETLAB’s state of the art analysis instruments.

After a heavy rainfall, water runs off of non-absorbent surfaces like roads, driveways, and parking lots. While the rain pours off the pavement, it carries away all of the pollutants with it, including oil, gasoline, and sediment. These pollutants flow with the water into natural rivers, streams, and lakes. However, it’s not only the larger waterways that are affected; drainage ditches and storm water retention ponds become polluted as well. This runoff is referred to as nonpoint source pollution because it does not stem from one specific source such as an industrial facility. Due to the lack of rainfall in Nevada’s arid climate, several months of pollutants can be released during one large storm event. Characterizing the levels of pollutants in water runoff is an important task in protecting our water sources.

WETLAB has developed specialized testing suites for characterizing this runoff. These tests include turbidity, to measure the amount of sediment that has escaped the roadways, and metal levels, including lead and mercury. To find out how WETLAB can help you characterize water runoff, call us at (775) 355-0202 and talk to one of our talented project managers.

To find out more about nonpoint source pollution, visit the Nevada Division of Environmental Protection (NDEP) website here.

Our ongoing series Life of a Sample explores what happens behind the scenes at WETLAB.  If you missed part one and two, check them out here!

The next step for a sample at WETLAB is distillation and digestion, which takes two days.  Lab technicians start with organizing samples by hold times and due dates, ensuring timely and accurate analysis. Then, we look through historical data to determine if any dilutions are usually needed.  All samples are then organized, the sample preparation log is meticulously filled out, and reagents and standard solutions are gathered.  Then the distillation or digestion block is heated, and once the block reaches the correct temperature, the samples are added.  The process is carefully watched, making sure that no samples boil over, and that the bubbles don’t stop during distillation.  Once the timer stops, the samples are removed from the hot block and placed in clean specimen cups.  Up next, samples move to analysis.

Digestion Rack

Samples being prepared for metals digestion.

Distillation Block

Hot blocks distilling samples.

 

Our ongoing series Life of a Sample explores what happens behind the scenes at WETLAB.  If you missed part one, check it out here!

The next step for a sample at WETLAB is sample preparation.  This process takes one day, and involves several different processes and people.  During the first step, all samples undergo the same log-in and review procedure, and sample prep is where the tests begin to diverge dependent on which analyses are required.  Some samples, including many soil tests, require the compositing of several different samples into one representative batch.  For many tests, different filtered and unfiltered aliquots are needed; these pieces are split up into different bottles and preserved as needed.  Once properly split, the samples are released to the lab.

Before the samples reach the lab, laboratory scientists clean and prep the necessary equipment, and lab technicians prepare batches of samples based on the tests logged in during step one.  Some tests are ready to preform immediately, and those move on to step three.  For others, extractions are needed.  This includes TCLP (toxic characteristic leaching procedure), cyanide extraction, MWMP (meteoric water mobility procedure), and humidity cells.   Some of these extractions take more than one day, like humidity cells, which can continue for a few months up to several years.  Ensuring proper preparations are preformed allows the rest of the analysis to run smoothly.  After the filtering and extractions are completed, it’s time for step three: distillation and digestion.

A portion of the humidity cells currently being processed in the geochemistry lab.

A portion of the humidity cells currently being processed in the geochemistry lab.

 

MWMP extractions.

MWMP extractions.