During this unprecedented time of global uncertainty, nearly all normalcy has been lost. Essential operations are still required to ensure our communities are adequately supplied with safe drinking water, effectively treated wastewater, and properly disposed solid waste. Manufacturing is required to make necessary items, demanding all levels of supply chain, from mining to delivery, remain open. These operations must continue to function in order to keep our society safe and open, but what about the regulatory requirements that surround these industries?
Water utilities, wastewater treatment plants, solid waste disposals, and mining operations are surrounded by a wide network of regulatory requirements from federal, state, and local levels. Due to COVID-19, many of these industries are facing extremely difficult operating conditions, made difficult due to staffing requirements, increased demand, public concern, and personnel safety. The Environmental Protection Agency (EPA) released a memo on March 26, 2020, outlining updated expectations for EPA regulated entities to help address some of these difficulties.
The memo includes language that identifies public drinking water systems as having a greater responsibility to maintain compliance and protect public health. This means that water systems must continue to monitor regulated contaminants and quality parameters, and maintain compliance. Certified operators may have continuing certification requirements delayed due to COVID-19.
For other regulated entities that are unable to meet standard regulatory requirements that would generally result in enforcement actions, the EPA will apply enforcement discretion. This enforcement discretion will only be applied to requirements missed as a direct result of COVID-19.
In order to ask for enforcement discretion, entities that are non-complaint must take steps to minimize any effects. They must then identify and document the dates of non-compliance, show how COVID-19 was a contributing factor, what response actions were taken after, and how compliance was reinstated. This documentation will be required for any potential enforcement discretion, and must be provided to the appropriate regulatory agency.
Regulated operations must make all efforts to maintain compliance, and the EPA will continue with any ongoing enforcement actions. This enforcement discretion does not apply to any operators under Superfund or RCRA Corrective Action regulations.
Standard compliance activities should be carried out to the best of your ability, which is why WETLAB is still here for your industry. WETLAB has taken steps to ensure the safety of our staff and yours, including using virtual meetings, contactless sample drop-off and bottle delivery, and digital reporting. Contact WETLAB at (775)355-0202 to find out how we can help ensure regulatory compliance and safety in this time of uncertainty.
Sample Collection is the first, and perhaps the most important step in the analytical process. Poor sampling inhibits the labs ability to produce representative data of a sampling source. Sampling is comprised of 5 main steps:
1. Create a Field Sampling Plan
2. Contact lab to order bottle kit and discuss any scheduling complications
3. Conduct sampling following instructions from Field Sampling Plan and the lab
4. Release Custody of Samples to the lab, or a third party shipper
5. Review Sample Receipt to ensure correct analyses are ordered
What do each of these steps mean? Let’s take a closer look.
1. Field Sampling Plan- This is necessary to succeed in sampling, and generally should include the following:
2. Ordering Bottles and Scheduling Sampling- Call us to order your sample containers. The bottles provided will be bagged together into “sets” to keep each site organized. A cooler will also be provided. The lab will generally need the following information:
Depending on the situation, more coordinating and information may be required! For example:
Courier Pick Up or Drop Off– If you need sample containers dropped off at your site or picked up from a courier, it is wise to plan sampling around your labs standard courier routes. You can find WETLAB’s standard courier schedule here.
Sample Shipping– If samples are being shipped to or from a remote location, consider the amount of time samples will be in transit. If you are sending short-hold samples, selecting a “next day delivery” option may be necessary.
Subcontracted Work– Most subcontracting is shipped to southern CA and NV, therefore, factor this extra time in transit when making your sample plan. Furthermore, avoid delivering samples requiring subcontracting on Fridays, as they cannot ship out until the following Monday.
Weekend Work– Weekend work is not ideal, however, it is sometimes unavoidable! It is important, however, to notify your lab as soon as possible about weekend work so that staff can be scheduled to accommodate the request.
3. Sampling- Once the game plan is set, it is time to execute your sampling project.
4. Releasing Custody of Samples- An additional responsibility of a sampler is properly documenting sample information and signing for any change of sample custody. The analytical Chain of Custody (or COC) is a required legal document submitted with samples to the laboratory. This document is a requirement for any sample submission to a lab, and serves numerous purposes:
5. Review Sample Receipt- WETLAB can send you an electronic “ sample receipt” which will list the entered information from your Chain of Custody, the receiving conditions of your samples (including anomalies), and an itemized list of all the analytical testing slated for your samples.
This is the final check before the testing will commence, so it’s important to review as soon as possible and contact the lab with any questions or concerns.
Contact WETLAB at (775)355-0202 to discuss your sampling requirements and project needs.
What is a holding time, and why do I need to know about it? A “holding time” is the elapsed amount of time from the point of collection to the moment of preparation or analysis. Note that this is not the date/time of receipt at the lab! If samples are analyzed beyond an analytical holding time, the data will be qualified on the analytical report and may not be usable for compliance.
The analytical hold time to a sample is like an expiration date to a carton of milk; past the hold time, analysis technically can still be performed (just as milk may be consumed after it expires), the results, however, in both cases may be unsavory. There are very few allowances for missed hold times and in almost every case, resampling is required.
You should get samples to the lab as quickly as possible, as holding times are different for volume received unpreserved. For example, metals shrink from 6 months to 7 days, nutrients from 28 days to 48 hours, others hold times may even shrink to 24 hours or less! Find out more about preservatives and sample bottles here.
Holding times are easily accessible, as the information is constantly needed (and important!):
From WETLAB’s website here
From the EPA under 40CFR, part 136, Table II
From the NDEP website here
Or, get a hard copy sheet on your next stop into WETLAB
Be aware, hold times can change as methods are updated, so you should contact WETLAB for the most up to date information before you develop your sampling plan.
What is a preservative, and why is it important? According to the EPA, methods of preservation are relatively limited and are intended generally to (1) retard biological action, (2) retard hydrolysis of chemical compounds and complexes, (3) reduce volatility of constituents, and (4) reduce absorption effects.
In other words, the purpose of a preservative is to “freeze” the sample chemistry at the point of sampling so that what gets analyzed at the lab is as similar to the source as possible, despite the unavoidable delay between the sampling and analysis.
Some common preservatives include:
However, the most important, but often overlooked, preservative is ice. Keeping a sample cold (between 2-6C) is a requirement for nearly every analytical test we perform EXCEPT for metals analysis. It is generally preferable to use wet ice instead of ice packs when possible.
Sample containers, just like preservatives, are designed to inhibit the natural chemical changes which will occur in a sample as time passes. In addition to that, sample containers also serve a few other purposes:
But how do I know which sample bottle and preservative to use? Simple, you ask the lab! By contacting WETLAB before you begin your sampling process, you will help ensure that you use the correct bottle and preservative. Our staff can also help you review your permit making sure the correct samples are taken at the correct time of the year (DPBs, LCR, SOCs), and making sure the correct methods are used for your sample matrix (drinking water, waste water, haz waste). We can even help with sampling requirements making sure your samples are collected as intended by your permit (LCR first draw, grab vs. composite), saving you valuable time that can be lost from unintended mistakes.
Be aware, preservatives and hold times are dictated by the analytical method and enforced by state/federal agencies and the laboratory. Cyanide species, Volatile Organics, Dissolved Oxygen, Bacteria, SOCs, DBPs, and many other tests absolutely require correct bottles and preservatives to analyze for compliance.
Contact WETLAB at (775)355-0202 to discuss your sampling needs. Our seasoned staff can help you determine which samples you need, how they need to be collected, and provide you with all the right bottles and preservatives to make sure your procedures remain in compliance.
In our blog posts Lessons From the Lab we answer frequently asked questions from clients. Find all installments of Lessons From the Lab here.
Cyanide sampling requirements have become stricter over the years. The Nevada Division of Environmental Protection (NDEP) issued guidance in October of 2015 that cyanide analysis must be collected correctly in the field so as not to have samples rejected by the analytical laboratory, or by the state due to incorrect sampling procedures.
NDEP stated, “If you are analyzing Cyanide samples for compliance with a Nevada program, (SDWA, CWA, RCRA, Mining) samples must be collected as described below (ASTM D-7365-09). Data obtained from samples not collected as described in ASTM D-7365-09 will be rejected.”
“ASTM D-7365-09 8.2.1 states that sample containers shall be made of materials that will not contaminate the sample, cleaned thoroughly to remove all extraneous surface contamination prior to use. Chemically resistant glass containers as well as rigid plastic containers made of high density polyethylene (HDPE) are suitable. Samples should be collected and stored in amber gas tight vials or narrow mouth bottles to minimize exposure to ultraviolet radiation and to minimize headspace in the sample containers (for example, amber open top VOA vials, amber Boston round bottles, or amber narrow-mouth HDPE bottles).”
“All certified Laboratories must reject samples not collected in suitable containers.”
What does this mean? All samples, regardless of matrix (drinking water, wastewater, ground water, surface water, aqueous, soil, sludge, etc.), must be collected in an amber narrow mouth container to minimize UV radiation exposure and to minimize headspace in sample containers. Samples not collected in the correct containers must be rejected by the laboratory and the sample should be collected in the correct containers, as described above. Furthermore, as dictated by the method cited by NDEP, chemical preservation is also required for aqueous samples. Aqueous samples must be preserved with sodium hydroxide (NaOH) to pH >10 at the time of collection, and then chilled on ice.
At WETLAB, we provide the appropriate bottles and preservative (NaOH) needed for your cyanide analysis, and are happy to answer any questions you may have regarding cyanide sampling containers.
Please call us at any at 775-355-0202 to request sample containers.
WETLAB is pleased to announce a new certification. We have expanded our testing abilities, and are now certified in Nevada to analyze Total Organic Carbon (TOC) by SM5310C. Total Organic Carbon (TOC) is a measurement of organic or carbon-based contaminants in water that come from a variety of sources. SM 5310C uses a UV-Persulfate TOC analyzer to measure total organic carbon in drinking water, surface water, ground water, and waste water.
At WETLAB, we are constantly trying new ideas, methods, and analyses to better serve our clients. Contact us at (775) 355-0202 to find out how our new, in-house TOC analysis can help you get the environmental testing results you need.
Arsenic is a well-known inorganic element, and it is one of the many routinely monitored contaminants in drinking water. WETLAB tests for Arsenic in drinking water through EPA Method 200.7 and 200.8. But how does Arsenic make its way into drinking water, and what are the potential health effects from increased Arsenic load?
The EPA requires that ground water systems monitor for Arsenic every three years, and surface water systems every year. These frequencies may be increased if Arsenic is found to be at or above the MCL (Maximum Contaminant Level), defined as 10ppb (parts per billion). This MCL was lowered from 50ppb in 2001 to better protect public health.
Arsenic is a naturally occurring element found in soils and rocks, and is also a by-product of several industrial and agricultural processes. Drinking water contamination can occur from naturally eroding deposits, and from runoff of various processes. Some water will be naturally higher in Arsenic due to the rocks and soils that make up the aquifer. Arsenic contamination can be treated in many ways, including Iron treatment and adsorption, which helps precipitate Arsenic out of water.
Ingesting water with Arsenic levels greater than the MCL can cause adverse health effects if the water is consumed for many years. These health effects include skin damage, circulatory problems, and an increased risk of various cancers.
To find out more about Arsenic in drinking water, visit this guide, published by the EPA.
Lead is a commonly tested for contaminant in drinking water, and public water systems must test for it on a prescribed, regular basis. WETLAB routinely tests for trace lead amounts in drinking water for many clients using two main methods- EPA 200.7 and 200.8. These methods use ICP (Inductively Coupled Plasma) machines, which can detect very small amounts of trace metals in water. But why is testing for lead important? What are the potential health risks associated with lead, and when do we care about it?
Lead is most commonly introduced into drinking water from service pipes and solder containing lead that corrode. The corrosion is often due to acidity in the water, which causes the lead to leach out of the pipe and into the water. Lead can also be introduced into drinking water through erosion of natural deposits. The EPA has identified the maximum allowable content of lead in water to be 0 mg/L, and an “action level” as 0.015 mg/L.
Lead in children, even in very low levels, has been shown to cause erratic behavior, learning problems, and slowed growth. Lead exposure is most dangerous to young children, infants, and fetuses. For that reason, lead exposure is also a significant concern for pregnant women. During pregnancy, lead amounts that have built up over a lifetime can leach out of the mothers bones and impact the growing fetus. Lead can also be dangerous for adults, although typically in higher levels than in children.
To mitigate these potential health effects, it is imperative that lead levels are tested accurately and consistently. Public health agencies routinely monitor the results of these tests to ensure that action is taken before a crisis arises.
More information can be found on the Quick Reference Guide, published by the EPA.
In our blog posts Lessons From the Lab we answer frequently asked questions from clients. Find all installments of Lessons From the Lab here.
What is Trace Metals Analysis?
Trace Metals analysis may be performed on a variety of aqueous matrices. Depending on the objective of your sampling, WETLAB can perform total recoverable or dissolved metals analysis. For total recoverable or total metals analysis, the sample must be preserved with the addition of nitric acid (HNO3) to lower the pH of the sample to <2. Dissolved metals require an additional step prior to the addition of HNO3. Samples for dissolved metals must be filtered using a 0.45 µm filter, after the sample has passed through the filter, the sample must be preserved with HNO3. In SW-846, the EPA recommends that samples are field filtered. If field filtration is not possible, clients may submit an unpreserved sample to WETLAB and we can filter the sample using 0.45 µm filters and preserve with HNO3. If field preservation is not possible, the EPA recommends in EPA 200.2, “Preservation may be done at the time of sample collection, however, to avoid the hazards of strong acids in the field, transport restrictions, and possible contamination it is recommended that the samples be returned to the laboratory within two weeks of collection and acid preserved upon receipt in the laboratory. Following acidification, the sample should be mixed and held for 16 hours.” Aqueous samples that have been properly preserved for trace metals analysis by EPA 200.7 and/or EPA 200.8 may be held and analyzed up to six months after collection date.
Broadbent – a full-service environmental, civil engineering, and water resources consulting firm – is experiencing fantastic growth in their air quality, cultural resource management, and water/wastewater service areas thanks in part to the support and resources of their testing partner WETLAB.
According to Randy Miller, Principal Engineer at Broadbent, “WETLAB provides competent and cost effective testing services. Their staff is knowledgeable and customer oriented. They understand our needs and the needs of our clients.”
Recently, the company successfully collaborated with a range of stakeholders on Superfund projects in Arizona, California, and Broadbent’s home state of Nevada. One effort was EPA’s Superfund Technical Assessment and Response Team (START) contract. This took place during Gold King Mine spill response efforts in Arizona and the 4-Corners Region with Broadbent assisting the US EPA and the Navajo Nation EPA to assess the extent and effects of the spill’s plume on the San Juan River.
A similar emergency response event Broadbent supported was EPA’s recent disaster relief effort in Middletown, California. This work was in reaction to the Valley Fire that consumed much of the town and surrounding Lake County communities. The work required expedient response, complex project planning, and thorough risk assessment by staff from multiple Broadbent offices.
Broadbent is proud to address customer needs in a safe, reliable, and efficient manner by leveraging their strong business partnerships, like the one they have with WETLAB. Whether undertakings are part of upfront planning, operations, or are emergency based, Broadbent professionals are ready to bring their expertise to the field.
Broadbent & Associates, Inc. is a Nevada-based, full-service environmental, civil engineering, and water resources consulting firm founded in 1987. The company is tested and trusted by their client base and regulatory agencies and has forged strong relationships with agency personnel, industry leaders, and innovative partners throughout the Western US. Broadbent’s professionals know what is required to complete projects and approach work in a safe, thoughtful, and informed manner.
Broadbent specializes in a range of professional environmental services, including: Air Quality Permitting and Stack Testing, Cultural Resource Management, Environmental Sampling, Assessment, and Remediation, Emergency Response, Water and Wastewater Facility Operations, Civil Design and Construction Quality Assurance, Water Resources, and Health and Safety Services.